Experiences Developing an ArcPad Customization
Page 11 of 11

Experiences Developing a Custom ArcPad Solution
for an Earthworm Inventory
Jim Dabrowski
National Park Service
Midwest Region
GIS Technical Support Center

Introduction

In February of 2004 the National Park Service was asked to assist in the development of a personal Geodatabase (pGDB) for an earthworm inventory project scheduled to begin in the summer of 2004. The principle investigators wanted to use hand-held computers for data collection and it was decided that this project would be a good opportunity to create a customized ArcPad solution for data collection. They hoped their experiences in developing the ArcPad customization would allow others to gain valuable knowledge about the time and effort required for such a project so they could make a more informed choice about using ArcPad in future projects. This paper describes their efforts to create the customized solution for the earthworm inventory. They discovered that while ArcPad can be useful in certain situations and some customizations (such as a simple shapefile form) are trivially easy to implement, significant customization requires a substantial amount of programmer time and effort and it is easy to push a project beyond the bounds where ArcPad can effectively function resulting in significant frustrations and project design compromises.
Project Description

The Project

Researchers at the Natural Resources Research Institute (NRRI) wanted to conduct a study measuring the impact of European earthworm invasions on the vegetation and soil characteristics of Pictured Rocks National Lakeshore (PIRO) and Voyageurs (VOYA) National Park. Earthworms can significantly change soil composition which can, in turn, alter the type and number of plant species in a park. The researchers planned to identify discreet sites within each park that met specific criteria for inclusion in their study. From these sites, they picked approximately 120 ten-meter by ten-meter plots where they conducted extensive surveys of all plant species (herbaceous, shrub and tree), earthworm populations and soil characteristics. This data was used to document the spread of earthworms from probable invasion points as well as to measure the impact these earthworms had on local vegetation. The NPS was asked to assist in the design of a pGDB which would then become part of the Inventory & Monitoring program.
Geodatabase design

To capture the data which the researchers anticipated collecting, and to be compatible with the existing NPS Natural Resources Database Template (NRDT), the following Geodatabase design was created:
[image: image1.png][image: image2.png]For the researchers it was important that they were able to distinguish between sites (named places in the parks where they went to gather their data) and plots (specific 10 meter by 10 meter locations within each site where they completed their various surveys). There were multiple plots per site. The plan was to combine these two tables in the final Geodatabase to form a tblLocations table as per the NRDT data model.

At each plot seven different individual survey types were conducted. Each survey could potentially be conducted by a different person (or persons) and each survey could potentially take place at different times. For example, at a given plot, one researcher might have conducted surveys of all herbaceous plants and seedlings, while another researcher might have surveyed the small and large shrubs. At a later date, two other researches might have travelled back to the same plot to conduct the earthworm and soil surveys. This lead to a design where each plot was related to many surveys and each survey had many individual survey items distributed among seven different survey tables. The survey table served as tblEvents (sensu NRDT) in the final Geodatabase design. There were also many look-up tables (not shown in the diagram above) that were designed to be a part of the database. The researchers desired to have as much of the data entry as possible appear in drop-down lists, which would constrain choices and reduce data entry errors. With this initial Geodatabase design, the job of converting it to a customized ArcPad solution began.
ArcPad Development

General ArcPad use

ArcPad is essentially a mobile version of ArcMap designed to run on a Windows CE device (e.g.: Pocket PC). While one can create new maps solely with ArcPad, it is designed to act as a way of taking a map created in ArcMap and loading it onto a Pocket PC where it can then be viewed and edited. When re-connected with a desktop PC, ArcMap imports the changes made on the Pocket PC into the desktop version of the map. One of the features that makes ArcPad especially useful is its ability to connect the Pocket PC to a GPS unit and have the two exchange data for the creation and editing of map layers. The ability to create and edit attributes of a map layer in ArcPad works quite well; however, it was with the process of transferring data to ArcPad that problems began to surface with the customization.
To transfer an ArcMap map to ArcPad on a handheld, the map must first be ‘checked-out’ from within ArcMap. To check-out a map, ESRI provides a custom control that can be added to an ArcMap toolbar. This control allows the user to specify the layers to be exported as well as whether to export all the data associated with those layers. ArcMap then creates a copy of that data and places it in a folder of the user’s choosing.
A drawback to this approach is that there is no programmatic connection between the ArcPad version of the data and the ArcMap version. When a user checks-out a version of the map for use in ArcPad it is simply a copy of the data. If changes are made to both versions of the map (the handheld version and the desktop version), the changes made to the desktop version will be overwritten when the handheld version is checked-in. Additionally, ArcPad does not support multiple check-outs of the same map. If the same map is checked-out multiple times, each check-in of the data will overwrite the previously checked-in data. ArcPad provides no support for merging changes made on multiple Pocket PCs to the same desktop map. It is not known if these limitations apply only to personal Geodatabases and do not apply to enterprise Geodatabases (eGDB) that are checked out for editing.

For the NRRI project, the researchers wanted to have four different copies of their maps checked out at the same time on four different Pocket PCs. Each researcher and field assistant was in the field at the same time collecting different information. If they all made changes to the same layer in ArcPad on their respective Pocket PCs each check-in would overwrite the changes made by a previous check-in. As a result, the researchers had to implement a policy whereby all changes to the underlying map layers were only made on one of the Pocket PCs and only that data would be used for check-in to the updated ArcMap document. The remainder of the handhelds, while still running ArcPad, were simply used as custom front-ends to the DBF tables that held their data. Again, this made the design and implementation of the customization difficult and somewhat awkward to use.

A second concern with this check-out process is the fact that ArcPad does not support many of the features of a Geodatabase such as feature classes, feature datasets, and relationship classes. If the ArcMap map contains layers that obtain their information from a feature class, that feature class is converted to a shapefile in the check-out process. This is not a significant issue since any changes made to the shapefile or its attributes will be applied to the corresponding feature class when the map is checked-in, but it is worth noting. A greater concern was the lack of support for relationship classes or for any of the relations between tables that were defined in the underlying Geodatabase. If changes made in the ArcPad version of the map violate any of the rules defined for the relations or relationship classes in the Geodatabase, these change must be manually corrected during the check-in process, or programmatically accounted for in an ArcPad customization.
A final concern with the ArcPad check-out procedure is that the process is limited to feature layers in the master map. Since there were many external data tables in the Geodatabase, (quite common in complex NPS Geodatabases) a procedure was developed whereby these tables were manually exported to DBF format (the only format supported for external data tables) using ArcCatalog. After entering data into those tables using ArcPad on the Pocket PC, another procedure was developed to allow them to be re-imported into the Geodatabase. It became apparent that if a substantial amount of time would be spent developing customized ArcPad solutions in the future, then a tool should be developed (either an ArcCatalog custom control or an Access extension) that could be used to facilitate this process. This tool should allow the user to specify which tables to export, manage data conversion and field-name mapping if necessary, and facilitate the importation of the data back into the Geodatabase. Without such a tool, every ArcPad customization would need to take into account the programmer time necessary to manage the exportation and importation of the data.

Customizing ArcPad

Despite initial concern over ArcPad’s lack of support for native Geodatabase objects (feature classes, feature datasets and relationship classes) and its inability to transfer external data tables, it is still useful. It provides an object model similar to that provided with ArcMap and ArcCatalog, and has extensive functionality when it comes to preparing a customized user interface to interact with map layer attributes as well as external data tables.
Customized Layers: ArcPad provides two methods for creating a customized user interface: ArcPad Layers and Applets. When ArcMap exports a map to ArcPad, it creates an ArcPad layer file for each layer in the map. These layer files are simply XML documents that ArcPad reads and renders on-screen for the user. The XML specification for an ArcPad layer file describes not only information about the layer but also a generic data entry form that can display the attribute information for whatever object is selected at a given time.
[image: image3.png][image: image4.png][image: image5.png]An ArcPad customization is a refinement of the user interface provided by ArcPad that presents shapefile attributes to a user using a tabbed-window interface as the standard interface . Given the small screen size of current PDAs, the tabbed window seems to be an obvious choice, though sometimes having to navigate multiple tabs can be cumbersome. See Figures 2 and 3 below for examples of this interface.
For the project, a customized ArcPad layer was used for much of the data collection. The data to be gathered for a particular plot was broken into logical categories and presented to the user on separate tabs. Additional tabs were created for each type of survey data collected for each plot. Each tab displayed summary information about the survey data gathered at a particular plot and provided the user with the ability to add, edit or delete additional records. There was a minor drawback to this approach.
The researchers gathered data from two parks (Pictured Rocks and Voyageurs) and because of this, they needed two base maps for their data collection. Since part of the solution involved a customized layer file, when the researchers created their maps and exported them to ArcPad they then had to manually replace the layers that had been automatically generated for each map with the custom layers created for this project. Like so many other situations, this was not an insurmountable problem, but one that added to the complexity of the distribution of the solution and the end user’s training. For larger projects that involve many base maps or many customized layers, the management of these customized layer files could become unwieldy. It would be nice if the check-out process from ArcMap allowed the user to specify a customized layer file to be included in the check-out rather than always generating a default layer file.
Despite the drawbacks involved in distributing a customized layer, there is a major strength to using it. Since a layer is a shapefile with attributes, the ArcPad layer that is generated gets access to the attributes of that shapefile ‘for free’ so to speak. The customized data entry form that can be created for an ArcPad layer is bound to the underlying shapefile’s DBF table. Hence, any form that is created and used with a customized layer can edit the attributes of the shapefile directly. This is not the case with the applets. With applets, all display and editing of data must be handled programmatically and this adds to the complexity of the code supporting the customization.
Applets: Applets are a second way of creating an ArcPad customization. Like ArcPad layers, an Applet is an XML document that defines a custom user interface form with standard Windows controls. As noted above, the major difference between a layer and an applet is that in contrast to layers, which are bound to a specific shapefile and get access to its attributes ‘for free’; applets, are not bound to any particular shapefile and all display and editing of data must be handled programmatically. An applet named ‘SpeciesPicker’ was created as part of the customization. See Figure 4 for a screen capture of the SpeciesPicker interface.
The SpeciesPicker applet was designed to display a list of all plant species the researchers could possibly find while collecting data. The applet allowed the user to filter the list by plant type as well as by park presence and then select individual species to add to a dynamic list of plants. This list was then used in other parts of the customization as the source of drop-down lists for researchers to choose from when conducting plant surveys at each plot.
The choice of whether to use applets or customized layers depends upon the situation and the desires of the programmers involved. If the solution will predominantly manipulate data from a shapefile, then a customized layer is the best approach since the form is bound to the underlying data for the shapefile. If, on the other hand, the solution will predominantly manipulate data from external data tables with little interaction with the data from a shapefile, then the use of applets make sense. It is in the intermediate case, when there is substantial data in both the shapefile as well as in external data tables, that the choice is less clear-cut.
For the earthworm project, there was a highly annotated shapefile representing each plot which participated in one-to-many relationships with seven separate data tables. It simply became a design choice to create a customized layer so as to make use of the bound forms for some of the data while still having to provide programmatic access to each of the external data tables. It would have been defensible to reduce the information in the shapefile and increase the number of external data tables that had to be manipulated. This would have required more programmatic effort to control the entry and editing of data, but would have been an acceptable choice. In the end, any developers involved in a significant ArcPad customization will need to make this choice, but it is preferable to make that choice at the beginning of a project rather than being forced into a particular approach part-way through. Another wish-list item for future versions of ArcPad would be the ability to bind forms to specific external DBF tables or, better yet, bind specific controls to specific fields in arbitrary tables. This would essentially eliminate the distinction between layers and applets but would allow for much greater flexibility in programming the customized forms for data entry.

ArcPad Programming

Using ArcPad Studio

As stated before, all ArcPad customizations (whether customized layers or applets) are XML documents. ESRI provides a development environment called ArcPad Studio for use in creating these customized layers, applets and their associated code. ArcPad Studio works fairly well as a standard Windows program, allowing the user to create and edit existing ArcPad layers or applets. Like most standard Windows programming environments, ArcPad Studio presents the user with a window that displays the current form and a palette of tools to ‘drag and drop’ user interface controls onto it. It also provides a text-editing environment for editing the source-code associated with each layer or applet (see Figure 5 for a screen capture of ArcPad Studio).
For the most part, ArcPad Studio worked as expected, though there were some rough edges to it. For starters, there was almost a complete lack of documentation for how to get started with and make effective use of it. The included help files did provide a simple tutorial for getting started, but it was quickly outpaced. The remainder of the help files were useful for certain components, but were frustratingly lacking for others. The ESRI on-line forums, third-party solutions, VBS programming resources and ultimately trial-and-error were the main tools used to develop the current solution. This lack of documentation is simply unacceptable and made the learning curve for using ArcPad Studio much steeper than it should have been.
Other rough edges became apparent when it came to simple editing of forms. Although it was possible to drag controls to a form, they could not be deleted by selecting them and pressing the delete key; they had to be deleted with the appropriate menu item: ‘delete control’ from the control menu, ‘delete page’ from the page menu, etc. Furthermore, there was no support for other edit commands such as cut, copy and paste and there was no way to select multiple items. When creating multiple tabs with similar interfaces, this lack of support for basic editing functions became a true hindrance. Luckily, there was a solution and that involved editing the underlying XML directly.
Since all ArcPad customizations are simply XML documents, it was possible to open the customized layer not with ArcPad Studio but with a text-editor. With the text-editor, it was possible to copy and paste entire pages with their controls and then simply change the names of the various objects as appropriate (find and replace worked well here). This method was also useful when it came to setting the tab-order of the controls. The tab-order of controls on an ArcPad form is apparently the order in which the controls appear in the XML tree and are added to the tree in the order in which they are created. Yet, there is no way to edit this order from within ArcPad Studio. However, using the text-editor, it was possible to edit the order of the controls thereby changing the tab-order. There were other aspects to using ArcPad Studio that proved to be equally frustrating (no way to set the alignment of controls, for example) that sometimes could be alleviated by editing the underlying XML and other times not.
VBScript vs. VBA
Somewhat surprisingly, the code written to support an ArcPad customization is not VBA (as is the case with many other ESRI products) but VBScript. Switching to coding in VBScript when one is more familiar with coding in VBA can be difficult enough without some of the interface problems ArcPad Studio presents to users. For example, in VBScript all object types are Variants, there are no other types. This sometimes makes manipulating stored data a challenge and comparisons between two objects will oftentimes fail unless the objects are cast as a specific type for the purpose of making the comparison. There are other peculiarities to coding in VBScript and anyone deciding to undertake an ArcPad customization would be well advised to search online for sites that document the specific differences between it and VBA. Microsoft provides a good overview of the differences on the Web which can be found by searching the MSDN Library for an article entitled, “Key Differences Between Visual Basic for Applications and VBScript.”
Aside from the differences between VBScript and VBA, the limitations of the editor provided with ArcPad Studio can add to the frustrations in trying to create an ArcPad customization. For example, although the editor provides syntax coloring, there is no auto-completion or intellisense to ease the practice of coding. There is a toolbar button that, when clicked, takes the user to a specified line of code. This button can be indispensable for debugging since typically with VBScript, when there is an error, the application will simply crash with an error message stating the line on which the script crashed. However, this tool has limited usefulness since it does not properly count lines of code that wrap with the screen and, as a result, it is almost always imprecise and gets worse as the code grows longer.

These are just several of the frustrations encountered while trying to write VBScript code with ArcPad Studio. Since the VBScript is also just a plain text file residing in the same directory as the custom layer or applet, any other text-editor could be used, but to be honest the services provided do make using it better than using a plain text editor. It is disappointing that some of the features common to modern development environments are completely lacking in this part of ArcPad Studio.
External Data Tables
For the ArcPad customization, it was necessary to interact with many external data tables as well as the attributes of the map layer. ArcPad provides a Data Access object as part of its object model that allows for the creation of a Recordset Object and the manipulation of the data it contains. However, like many other interactions with ArcPad, working with the recordset of an external data table proved to be frustrating at times.

At its core, a recordset is simply the contents of a DBF table or a subset of records in that table. The Recordset object provides all the expected functions for moving to the first, last, next and previous records as well as functions for adding and deleting records. However, there is no way to bind the controls on a custom form to the fields in an external data table. Hence, all initialization and updating of the data from an external data table displayed on a form must be carried out programmatically.
For example, in the custom solution, there were numerous surveys associated with each plot. Displaying the results of a particular survey required the creation and opening of a Recordset object and initialization of each field. This, so far, was not very different than designing unbound forms in Access. However, the interface for the customization contained multiple tabs, and in ArcPad the information displayed in each control is lost whenever the user switches among tabs. Therefore each control had to be reinitialized each time a page was made active. There were no facilities for generating primary keys. To allow users to create new records required the creation of a function that generated the next valid primary key. There was no update function available for the Recordset object. To allow a user to edit a record required that the data be loaded into the appropriate fields, and then written back to the recordset upon some user action (e.g., clicking the OK button). Because of having to handle all referential integrity constraints and field value updates manually, the management of more than a simple one-to-many relationship quickly became unwieldy. As a result, the database design devolved into seven one-to-many relationships between the plot points and the seven different surveys conducted at each plot, with much repeated information in each of these external data tables. These tables then had to be split apart upon re-importation to Access so as to re-achieve a normalized design. This is not to say that the management of more complex relationships was impossible, it was just that programming database access in ArcPad felt somewhat like stepping back in time to the days of mainframe database programming.
 It is easy to forget how much functionality modern database management systems provide to programmers.
Control Confusion
Despite having developed a number of applications in Visual Basic, created custom controls for ArcCatalog, and designed several Access databases with customized front-ends, the programmer for this project was unprepared for interacting with ArcPad Studio’s controls. In short, the controls provided for designing the customized forms in ArcPad simply did not work as expected and sometimes behaved in bizarre ways.

Combo boxes were used extensively in the customization and therefore much of this section deals with them. The ArcPad combo boxes are like standard Windows combo boxes: they have the ability to display textual data in the drop-down portion and store a code value in the field associated with it. However, combo boxes in ArcPad have some peculiarities. For example, when setting combo box properties, unless the option to limit the choice to the list is selected, the combo box will not display the textual data, only the code value. Granted, when using combo boxes it is most common to want to force users only to choose from the list, but this was an annoyance nevertheless and, until discovered by trial-and-error, a significant amount of time was spent trying to determine why the combo boxes did not properly display the desired data. There is a Value property to combo boxes that holds the code value of the item currently selected and although the documentation indicates that the this property can be set in code so as to initialize the control, it does not work. A work-around used in the customization was to load the combo box with the desired values, read the desired data from the Recordset, search the combo box for the desired value, obtain the index of that value and then set the ListIndex property of the combo box. Initializing a combo box to a preset value is basic functionality and programmers should not have to spend time developing ways to overcome a lack of basic functionality.
Many other controls also have similar quirks. For example, although text-boxes have a Text property that holds whatever data is currently being displayed, this property cannot be set. Instead, one must use the Value property. There is a sub-form control that displays the contents of a table much like a sub-form in Access (showing only related records for example). This control however, proved to be of dubious value since the entire contents of the table must be displayed and the linking fields of the two tables must have identical names or nothing will be displayed. Many of the other controls available in ArcPad Studio were not used in the customization, but searches of the ESRI on-line forums indicate that they too have their quirks and idiosyncrasies. Overall, the process of using many of the controls was frustrating and hit-or-miss in terms of expected functionality.
Is ArcPad Good for Anything?

Given the generally negative experiences with trying to develop an ArcPad customization, it is easy to wonder just whether it is good for anything. Eventually, the conclusion to this question is “Yes.” ArcPad seems to be designed for, and works well at setting the attributes of a shapefile. The check-out and check-in processes work well enough when combined with ActiveSync, to provide a fairly effective workflow. Modifying the default layer generated for the shapefile with ArcPad Studio is straightforward and, despite problems with some of the controls, an effective custom user interface can be created. Just be prepared to spend more time teasing out seemingly bizarre errors than would normally be expected. Furthermore, ArcPad works well when connected with a GPS unit and if the data to be collected in the field depends heavily on having an electronic map in hand, ArcPad can prove to be extremely useful and may perhaps be the only solution available.
Where ArcPad begins to fail is when it is used to manipulate a moderately complex database structure. ArcPad’s facilities for interacting with external DBF tables are limited at best. There is no built-in support for exporting tables from the Geodatabase to the handheld. Furthermore, all rules for referential integrity must be maintained by custom-written VBScript. The quirkiness of many of the controls make displaying and editing data much more of a chore than is expected with modern database management systems. If the project design can be reduced to a small number of shapefiles with several external tables related to the records in the shapefile, the project will manageable, provided the user is constrained to interacting with one type of table, and one record, at a time. Trying to maintain a more complex Geodatabase design will likely prove to be more effort than it is worth.
Alternatives to ArcPad

Given the difficulties in developing the customized ArcPad solution for the NRRI earthworm project, it is reasonable to wonder if there aren’t alternative solutions for field data collection. It turns out that there are but, like the choice to use ArcPad, the exact solution that works best depends on the situation.
First, if the data to be collected depends heavily on using a map in the field in conjunction with a GPS unit, ArcPad seems to be about the only choice. (Except for the possibility of using a Trimble unit with a TerraSync data dictionary.) Despite the problems noted above, a usable ArcPad solution can be generated in a reasonable amount of time that is better than simply editing the attributes table for a given shape. However, if the data to be collected does not rest so heavily on the actual map in use, alternatives to ArcPad do exist.

For example, in the customization created for NRRI, there really was no need to have four separate Pocket PCs each with its own version of the map loaded onto it simply for the purpose of entering plot survey data. In fact, having four separate versions of the map checked-out at one time complicated matters. In essence, most of the Pocket PCs were simply data collection devices that did not need to display a map to the user. Instead, it might have made more sense to use ADOCE with eMbedded VB, or other third party database software.

ADOCE + eMbedded VB

There are several technologies that work together to provide programmatic access to databases on standard Windows desktop machines. On a typical Windows PC, it is possible to use Visual Basic to write a program with a custom interface that opens a Microsoft Access database and displays the records to the user for editing. Microsoft provides a special programming library called ADO (ActiveX Data Objects) that provides the high-level functions necessary for opening, viewing and editing the data inside an Access or other database. Therefore, rather than using Access, one could design a stand-alone program that could act as a front-end to virtually any database on any computer.
Things are more complicated when working with Pocket PCs. Access databases cannot be directly transferred to a Pocket PC, they must first be converted to CDB format via ActiveSync. Once the database has been converted to CDB format, things are still difficult since there is no Pocket PC version of Access available. The good news is that Microsoft provides a special version of the ADO library called ADOCE for use on Pocket PC devices. ADOCE provides access to CDB database tables in much the same way that ADO provides access to MDB database tables on a desktop PC. Using a development environment like eMbedded Visual Basic, it is possible to create custom programs that can be installed on a Pocket PC which can, using the ADOCE library, connect to a CDB database and allow users to view, enter, edit and delete records in that database. This combination of technologies: eMbedded VB, ADOCE and Access databases converted to CDB format with ActiveSync seems quite promising though it too lacks completeness.
Using ADOCE and CDBs to store and edit data could work well for manipulating the external data tables associated with a pGDB. However, just as using Access to open and manipulate the data in a pGDB can lead to corruption of the database, it is likely that using ADOCE with CDBs to manipulate those same tables on a Pocket PC could also lead to corruption. Also, as noted above, this type of solution still does not allow for any type of synchronization with a map and GPS unit. The benefit to using ArcPad is that one has access to a map of the data being manipulated coupled with the ability to edit additional external data tables. ADOCE + eMbedded VB only provides half the solution.

Third-party Solutions
Aside from developing a custom application with eMbedded VB, several third-party solutions exist. A quick search of the web produces several software packages that, for a reasonable cost, provide the user with a means of interacting with CDB databases on a Pocket PC. These programs would still require the development of an interface in much the same way as with ArcPad or Visual Basic, but the coding necessary to connect to the various database tables and maintain referential integrity is hidden from the user and the programmer alike. Some of the better developed programs provide a sophisticated interface, but likely will not provide much of a reduction in development time over generating a custom solution from scratch — at least for an experienced programmer. There are also custom programs that do not rely on converted Access databases and instead use their own proprietary database format. These programs suffer from the fact that any Geodatabase would have to be converted to and from its own format to be used on the Pocket PC and the interface would still have to be developed. None of these seem like ideal solutions for most projects since in addition to the problems noted above, there still remains the problem of integrating GPS and map data with the interface which is difficult if not impossible with most third-party solutions.
Summary & Conclusions

The National Park Service completed a project to develop a customized ArcPad application to assist data collection for an earthworm inventory project being conducted by NRRI. This project provided an opportunity to try ArcPad and evaluate more thoroughly its strengths and weaknesses. Despite frequent frustrations and setbacks in creating the customization, the project was an overall success.

ArcPad by itself is a useful program for displaying maps that can easily be synchronized with a connected GPS unit. It works well for trying to create new or edit existing objects on different map layers as well as for editing attribute information for those objects. When it comes to creating the customized user interface, however, it is easy to push ArcPad past the point where it can effectively function. With some limitations, a customized user interface can easily be created, though some of the controls for that interface remain a challenge to program. If a contemplated project involves the interaction of many related external data tables, simplifying the structure of the database so that only one connection (the shapefile object and a single external data table) at a time is highly recommended. If this limitation does not interfere with the project in any significant way, ArcPad could be a good choice. If, however, there is a strong desire to maintain a more complex set of related tables, perhaps another technology should be employed. Developing a customized eMbedded Visual Basic application that connects to external database tables via the ADOCE library could be an attractive option. A major drawback to this implementation is the loss of integration between the GPS unit, the map of the data and the data being collected. The Pocket PCs would serve simply as electronic forms for entering data. Third party database software may offer some useful features, but it does not seem likely that they would provide a significant benefit over the development of a customized application. It would be pleasant if the next revision of ArcPad allowed for the development of custom interfaces via eMbedded VB with full connectivity to Geodatabases via CDBs and provided a map control similar to the one provided in the current ESRI Core library for viewing map data. This would provide the best of all worlds when it comes to developing customized data collection solutions for Pocket PCs.

Contact Information
For further information, feel free to contact the author any time at the address, telephone number or email address provided below. A sample of the ArcPad customization along with source code and installation instructions can be found at: www1.nature.nps.gov/im/units/mwr/gis. Please note that ArcPad must be installed to be able to use the customization. The included source code (Plots.apl and Plots.vbs) can be opened with a text-editor for those that do not have ArcPad Studio installed.
Jim Dabrowski
National Park Service
Midwest Region GIS Technical Support Center
B102 Steenbock
550 Babcock Drive
Madison, WI 53076

(608) 263-7715

jrdabrowski@wisc.edu
Figure � SEQ Figure * ARABIC �1�: Diagram of Geodatabase design for earthworm project.

Figure � SEQ Figure * ARABIC �2�: Screen capture of first page of ArcPad customization.

Figure � SEQ Figure * ARABIC �3�: Screen capture of second page of ArcPad customization.

Figure � SEQ Figure * ARABIC �4�: Screen capture of the first page of the SpeciesPicker applet.

Figure � SEQ Figure * ARABIC �5�: Screen capture of ArcPad Studio development environment.

�My procedure uses queries within MS Access for this process to handle datatype conversion, field name mapping (if needed), and additional data validation.

�I believe it is the only possible choice

�I believe an important concept is that shapefiles are flat, so that anything that relates to a spatial feature in a one-to-many relationship has to have the “many” component in DBFs

�You might note somewhere in here another serious deficiency in my book – the lack of any meaningful documentation for using ArcPad Studio – App Builder. Any new user will have to resort to the help file, ESRI discussion lists, and third party examples and VBS programming resources, trial and error to cobble together a moderately complex solution.

�Hey, this is how db programming was in the good ol’ days.

�I don’t believe that is possible since the .cdb supports only a subset of the .mdb functionality.

�An additional comment about .cdb’s. I am suspicious that Microsoft is phasing them out in favor of the SQL model. As I understand it VB NET does not support direct cdb connections and signals a move towards SQL Server CE. My understanding is that ArcPad 7 will retain the DBF as the primary table type.

�None of the other solutions approach ArcPad integration of GPS into the interface.

�I remain dubious of this. None of the other ADOCE options can manipulate the unique spatial data or relationship classes in a geodatabase. I think that ADOCE solutions might only seamlessly allow the creation and editing of the tabular data.

�Absolutely!

